Trends in the Industrial Mechanic (Millwright) trade
There is a progression from analog to digital equipment that provides computer generated readouts and can be programmed to give accurate readings in less time. This technology allows for improved self-diagnosis and predictive maintenance and has reduced the length of mechanical outages and manpower required to complete outages. For example, the technology has reduced equipment down time for tasks such as alignment, diagnosis, assembly and repair. Industrial mechanics (millwrights) need to keep pace with changes in technology.
Advances in predictive maintenance have led to more advanced diagnostic equipment such as alignment equipment and vibration monitoring equipment. Acoustic monitoring technology is advancing rapidly. Fibre-optic scopes are increasingly used to view and troubleshoot internal components. Thermal imaging is advancing preventive maintenance based upon equipment heat signature. Ultrasound testing is becoming prevalent in the maintenance of piping systems. There is advanced diagnostic equipment for fluid power inspection such as handheld analyzers and clamp-on flowmeters.
Hydraulic tools are continuously evolving in ease of use and size. They are becoming safer and more efficient to use. Hydraulic technology is being used for broader applications such as bolt tensioning and torquing.
There is a move toward environmentally conscious hydroelectric construction projects such as “run of the river” that also minimize the human footprint. The emphasis is on building smaller units as opposed to one large unit. Windmill technology continues to advance. However in this case, the units are increasing in size to allow more production of energy. Waste management is another growing industry. These are all creating more work for industrial mechanics (millwrights) in the installation, diagnosis, maintenance and repair of these units.
The evolution of technology and the complexity of systems such as hydraulics, robotics and renewable energy systems (solar panels, wind turbines) are expanding the scope of work for industrial mechanics (millwrights).
There is a wider variety of materials available for use in the construction of machinery and components, such as new composite alloys, fibre-based composites and advanced plastics. More types of sealant and epoxy materials are available.
Preventive and predictive maintenance planning is seen as more important and scheduled shutdowns are more prevalent. The knowledge and use of a Computer Maintenance Management System (CMMS) to manage labour and cost is essential. For example, Reliability Centered Maintenance (RCM) and Total Quality Management (TQM) methodology are becoming more common because of its cost effectiveness.
Some hand and power tools are ergonomically designed to prevent repetitive strain injuries. Many power tools are now cordless with improved battery life and light-weight design, making them more ergonomically friendly, resulting in fewer injuries. There is an increased use of powered mobile equipment (PME) such as scissor lifts, aerial work platforms (AWP) and lift trucks in the trade. This equipment is incorporating more safety features. Certification of the equipment and of employees’ competency is becoming mandatory. Jurisdictional regulations are becoming more stringent by requiring documentation for equipment operation and training.
Technological advances and worker education regarding personal protective equipment (PPE) has improved effectiveness and functionality, resulting in improved safety practices and procedures among tradespersons. Improved identification of hazardous materials through increased use of Safety Data Sheets (SDS) contributes to a safer work environment.
Quality assurance, reliability, maintainability and safety are critical elements of the standards for industrial mechanics (millwrights). Continuous changes in technology, environmental regulations and worker safety concerns have led to improved safe work practices.